

Towards high performance low bitwidth training for deep neural
networks

Chunyou Su1, ‡, Sheng Zhou2, ‡, Liang Feng1, and Wei Zhang1, †

1Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
2Department of Computer Science Engineering, Hong Kong University of Science and Technology, Hong Kong, China

Abstract: The high performance of the state-of-the-art deep neural networks (DNNs) is acquired at the cost of huge consump-
tion of computing resources. Quantization of networks is recently recognized as a promising solution to solve the problem and
significantly reduce the resource usage. However, the previous quantization works have mostly focused on the DNN inference,
and there were very few works to address on the challenges of DNN training. In this paper, we leverage dynamic fixed-point
(DFP) quantization algorithm and stochastic rounding (SR) strategy to develop a fully quantized 8-bit neural networks target-
ing low bitwidth training. The experiments show that, in comparison to the full-precision networks, the accuracy drop of our
quantized convolutional neural networks (CNNs) can be less than 2%, even when applied to deep models evaluated on Image-
Net dataset. Additionally, our 8-bit GNMT translation network can achieve almost identical BLEU to full-precision network. We fur-
ther implement a prototype on FPGA and the synthesis shows that the low bitwidth training scheme can reduce the resource us-
age significantly.

Key words: CNN; quantized neural networks; limited precision training

Citation: C Y Su, S Zhou, L Feng, and W Zhang, Towards high performance low bitwidth training for deep neural networks[J]. J.
Semicond., 2020, 41(2), 022404. http://doi.org/10.1088/1674-4926/41/2/022404

1. Introduction

The past years have seen a great success of deep neural
network (DNN), especially when it comes to using the CNNs
for typical computer vision tasks, such as image classification,
pattern recognition, object detection and so forth. However,
one commonly ignored fact is that, in the most cases, such re-
markable performance is obtained at the cost of huge con-
sumption of computing resources. With the topology of neur-
al network going deeper, the case could be even worse. Take
the CNN model from ILSVRC[1] as an example, compared to
AlexNet[2], ResNet152[3] improved the top-5 classification accur-
acy by ~11.7%, while the running FLOPs soared to more than
10x. As a result, the training and inference of the state-of-the-
art models suffered from large resource requirement and poor
energy efficiency. Moreover, the training phase can last for
weeks because of the sophisticated model architecture and
the time-consuming floating-point arithmetic operations. The
floating-point operations are also unfriendly to the hardware
accelerations on ASIC or FPGA. To address this problem, mod-
el compression has been proposed, which helps to drastic-
ally reduce the arithmetic complexity and thus alleviate the
computing workload.

Recent works on model compression basically lie in two
categories: pruning and quantization. Pruning means that
there is sufficient redundancy in common DCNN models[4],
hence a number of weights can be eliminated from neuron
connection[5, 6]. However, since pruning introduces some irreg-

ular connections between neurons, the dataflow in the feed-
forward pass has to be rearranged in order to organize the
whole process correctly and efficiently, which usually re-
quires dedicated hardware design on ASIC or FPGA platform.

As for quantization, instead of using single-precision float-
ing-point format, it represents weights (W), activations (A)
and gradients (G) with limited numerical bit-width. In this
way, quantized networks are enabled to replace the time-con-
suming floating-point processing elements with integer-
based arithmetic units, therefore the amount of operations
can be dramatically reduced. In the meanwhile, as a byproduct of
limited bit-width representation, the demand for storage
will shrink greatly, which is quite an appealing feature since
the size of parameters in recent networks can be as large as
~10 M. Based on the way of generating quantized neural net-
work parameters, related works can be further classified into
two types: quantizing with pre-trained networks and training
from scratch[7]. It is obvious that the former ones still rely on
high-precision networks, and they are mainly targeting the in-
ference phase in deployment. To equip edge devices with com-
plete ability to perform both training and inference, the lat-
ter ones, also known as fully quantized networks, deserve
more efforts.

In the era of IoT, deep learning techniques have been ex-
pected to be applied in wide industrial scenarios, yet high
power demand and poor energy efficiency remain main barri-
ers for its popularization. Quantized neural networks provide
a promising solution to solve the problem. In this work, we
aim to develop a quantized training flow with most of the
parameters quantized to 8 bits and train the network from
scratch under a very limited classification accuracy degrada-
tion. Our contributions can be summarized as follows:

Chunyou Su and Sheng Zhou contributed equally to this work.
Correspondence to: W Zhang, wei.zhang@ust.hk
Received 15 JANUARY 2020.

©2020 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2020) 41, 022404

doi: 10.1088/1674-4926/41/2/022404

http://dx.doi.org/10.1088/1674-4926/41/2/022404

(1) We achieve quantized neural networks for training
from scratch with limited classification accuracy degradation
for CNN.

(2) We evaluate the quantization scheme on a RNN mod-
el and obtain very similar outcome to its single-precision coun-
terpart.

(3) We develop a FPGA prototype to validate the feasibil-
ity of the proposed scheme and evaluate the resource usage.

A lot of experiments are performed on prevalent state-
of-the-art DNNs and datasets. It is demonstrated that we
achieve 0.12% top-1 accuracy drop for ResNet-20 on Cifar-10
dataset. We achieve 0.42% top-1 accuracy drop for AlexNet.
We achieve 1.31%, 1.92% top-1 accuracy drop for ResNet-50
and Inception V3 models, respectively. As for the prototype,
the synthesis results show that we reduce the DSP usage by
×106, we reduce the BRAM usage by ×1.97, we reduce the FF
usage by ×6.23, we reduce the LUT usage by ×2.9. Besides,
for translation models, we achieve an 8-bit GNMT model with
24.05 BLEU, which is close to 24.46 achieved by a single-preci-
sion model.

2. Quantization methods

Q

Among all quantization methods, the basic procedure to
quantize a given vector (or tensor) x is to perform a trans-
form function upon it, which is called the quantization func-
tion. Assume that the original vector to be quantized is repres-
ented in 32-bit floating-point format, and our ultimate goal is
to replace it with 8-bit fixed-point representation. In this
work, we choose the dynamic fixed-point (DFP) as our quantiz-
ation method.

In this section, firstly, the details of the DFP quantization
algorithm are provided, including the basic principles of updat-
ing scale integers and the bit-width settings in the MAC opera-
tions and back propagation datapath. Secondly, some other
typical quantization methods are introduced and analyzed to
form a comparison to DFP. The strengths and weaknesses of
different quantization methods are pointed out respectively.

2.1. Dynamic fixed-point (DFP)

2.1.1. Algorithm description

ex

Among all types of layers in DCNN, convolution layer and
fully-connected layer account for more than 90% of the com-
puting time[8]. Therefore, quantizing feature maps and para-
meters in these layers provides the most benefits. In order to
quantize the tensors from 32-bit to 8-bit and keep the repres-
entation precision to the largest extent, we use the dynamic
fixed-point (DFP) representation[9]. The DFP format is based
on fixed-point representation, while the scale factor is dynamic-
ally adjusted. Concretely, each element of a tensor in DFP
format is represented by an 8-bit signed integer. Meanwhile,
the tensor also comes with a signed integer e representing
its scale. For each entry of this tensor with value x (in 8-bit
signed integer), the actual value it represents is thus . The
scale integer e is updated constantly during the training pro-
cess.

{− ⋅ e − ⋅ e − ⋅ e . . . ⋅ e ⋅ e}
Given the scale e, the original tensor in 32-bit floating-

point format is quantized to 8-bit DFP by approximating each
floating-point number to the closest representable DFP num-
ber, i.e. , , , , , .
The quantization method is deterministic. We also used
stochastic quantization (rounding) for the representation of

gradients, and the details are covered in Section 3.
e

e
e

e

The scale integer is chosen such that the numerical resol-
ution is as high as possible, without having overflow. For im-
plementation, is chosen to be a fixed number at the start of
training. For every training batch, is incremented if there is
an overflow in quantization, and is decremented if doing so
does not lead to an overflow. According to Ref. [9], the DFP
quantization scheme can be summarized as in Algorithm 1:

Algorithm 1 Dynamic fixed-point

Inputs: tensor x to be quantized, scale integer ei w.r.t x in the
 ith iteration, overflow rate rmax

ei+ (i +)thOutput: updated scale integer in the iteration
rx x1: compute the overflow rate for tensor
rx x2: compute the overflow rate for tensor

rx > rmax3: if then
ei+ ← ei + 4:

rx ≤ rmax5: else if then
ei+ ← ei − 6:

7: else
ei+ ← ei8:

9: end if

rmax =

x̃ f

To be more concrete, we set the overflow rate .
Given the input tensor x, we firstly re-scale it to another
tensor through a mapping function :

x̃ = f(x) = x / e.

[−n−, n− −]Then, with the quantization bit-width n, let S denote the
interval , the overflow rate of input tensor x
can be determined as follows:

rx = { , if any entry of x̃ falls out of the interval S,
, if all entries of x̃ lie in the interval S.

e
Similarly, one can compute the overflow rate of 2x. In

this way, DFP guarantees that the scale integer is neither
too big nor too small with respect to the input tensor x. Even-
tually, when the training is done, all scale integers will be
fixed for the inference stage.

2.1.2. Bit-width settings
Both convolution and fully-connected layers are based

on the multiply-and-accumulate (MAC) operation. Although
designing an algorithm that performs both multiplication
and accumulation in 8-bit is certainly beneficial, we choose to
perform 8-bit multiplication and 32-bit floating-point accumu-
lation. Since quantized networks mainly aim to reduce the con-
sumption of computing resources, the priority lies in the optim-
ization of 32-bit multiplications, while the overhead of 32-bit
addition is significantly smaller and thus acceptable. In this
way, useful information can be preserved with a minimized
computation workload to enable effective network learning.

In terms of the back-propagation data path, all paramet-
ers are kept in 32-bit floating-point for gradient descent and
update. However, following the spirit of minimizing computa-
tion complexity, we ensure that the operands of tensor multi-
plication are represented in 8-bit DFP. For example, consider-
ing the gradient with respect to the weight in a convolution
layer, which can be generated by the following formula[10]:

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

∂L
∂wl

jk

= al−k δ l
j.

al−k δ l
j

wl
jk

Here, the activation and the error are guaranteed to be
8-bit DFP such that the multiplication operation can benefit
from the efficient integer operation. As for the gradient w.r.t.
the weight , it is represented in single precision floating-
point and will be directly used to update the corresponding
weight. Since the vanishing of the gradient is particularly
severe in fully quantized networks, representing them in 32-
bit floating-point format is necessary. Nevertheless, the cost
is almost negligible.

To sum up, DFP algorithm is hardware-friendly because
the quantized tensors can be represented with pure integers,
which serve as the operands in MAC operations, while the
quantization process itself introduces no complex floating-
point operations like multiplications or divisions.

2.2. Comparison with other quantization methods

Apart from DFP, various quantization methods have
been emerging over these years. In some quantization meth-
ods, the numerical resolution between adjacent symbols of
the codebook is fixed, whilst in some others, it varies accord-
ing to the mapping function. Accordingly, a method can be
categorized as either linear quantization or non-linear quantiza-
tion.

2.2.1. Linear quantization
The linear quantization is a method where the resolu-

tion is fixed under the input tensor x. Intuitively, to approxim-
ate x with a finite codebook, the discrete values can be uni-
formly appointed over the range between its smallest and
biggest entries. This can be expressed as the following for-
mula[11, 12]:

Q(x) = min(x) + step × Round(x −min(x)
step).

Here, Round() is the rounding function, which will be ex-
plained in Section 3. step is the fixed interval value between
adjacent discrete values and is computed given the input
tensor x and the quantization bit-width n:

step =
min(x) −min(x)

n −
.

Apparently, such a basic linear quantization method en-
ables to fit the value of input tensor automatically without
the extra concern about dealing with an overflow. However,
the method is inevitably sensitive to any outlier in the input
tensor. For instance, if the biggest entry deviates from the
second biggest entry too much, the above-mentioned meth-
od will suffer from severe quantization noise.

2.2.2. Non-linear quantization
In contrast, the interval values between adjacent dis-

crete symbols are different in non-linear methods. Logar-
ithmic quantization[13] is one of the common non-linear al-
gorithms. The corresponding transformation function is:

Q(x) = {, if scalar x = ,

x̂ ⋅ sgn(x), if scalar x ≠ .

Here, the quantization function performs element-wise op-

sgn(x)
x̂

erations. That is, for each entry of the input tensor x, the func-
tion treat it respectively. The sign function is respons-
ible for determining the sign of scalar x, and the output is
either 1 or –1. In the end, a quantized matrix is generated.
The calculation of is where the logarithmic arithmetic takes
place, namely:

x̂ = Round(log(∣x∣)).
The ultimate goal of logarithmic quantization is to re-

place the complicated MAC operation with simple bit-shift,
which is extremely cheap in digital circuit design. Un-
doubtedly, logarithmic quantization helps to speed up the
MAC operations greatly, however, according to the experiment-
al results reported by Ref. [13], the drop of classification accur-
acy is typically greater than other methods. Moreover, the log-
arithmic arithmetic itself is intrinsically not hardware-friendly,
which sets a barrier for deployment in embedded systems.

Other non-linear quantization methods introduce differ-
ent ways to establish the mapping from the symbols of the
"codebook" to real values. Some use explicit functions, like
the tanh function that is used to quantize weights in DoReFa-
Net[14], while others provide a set of discrete values to better
match the statistical features of parameters. Take Ref. [15] as
an example, where Cai et al. investigate the distribution of net-
work activations in order to devise an half-wave Gaussian
quantizer, which is used to approximate activations and can
alleviate the gradient mismatch in back-propagation.

In general, although non-linear methods have their
unique advantages, the incurred non-linear operations are
too expensive in most cases. Under a fixed quantization bit-
width, linear methods could bring a better trade-off between
the performance and hardware resources cost.

3. Stochastic rounding

f

Obviously, with the reduction of bit-width, the numeric-
al resolution inevitably goes down to some extent. In fact,
the quantization function can be conceptually decomposed in-
to two separate steps. In the first step, as is aforementioned
in Section 2, the vector x is mapped to a proper interval via
scaling :

f ∶ x → x̃.

x̃ ⌊x̃⌋{x̃}
Following the notation of the Number Theory, we divide

the scaled tensor into its integer part and its fraction
part , such that:

x̃ = ⌊x̃⌋ + {x̃}.⌊x̃⌋Actually, the integer part corresponds to the 8-bit
fixed-point representation without a decimal point, while the
fraction part will be discarded and that is where the preci-
sion loss exists.

x x̃⌊x̃⌋ ⌊x̃⌋
x̃

After re-scaling the original tensor to , the second
step is to approximate the fraction part to 0 or 1. Finally,
the rounded bit (0 or 1) is added back to the integer part
to form the ultimate 8-bit integer. We define the overall pro-
cess of generating the low bit-width integer from re-scaled
tensor as the Rounding function.

3.1. Rounding function

Apparently, the most intuitive way to approximate a frac-

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404 3

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

tion value is nearest rounding (NR), which means the out-
come will be the closest representable discrete value:

NR(x) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⌊x⌋ , if ⩽ {x} ⩽

,

⌊x⌋ + , if

< {x} < .

However, nearest rounding may incur severe quantiza-
tion noise, which can be the major factor influencing the per-
formance of quantized networks. To address this issue,
Stochastic Rounding (SR)[16] was proposed. Unlike nearest
rounding, stochastic rounding is not a deterministic round-
ing mode, which means the result can be different over mul-
tiple attempts. Specifically, it is decided by both input value
and a computed probability:

SR(x) = { ⌊x⌋ , w.p. − {x},⌊x⌋ + , w.p. {x}.
x̃

{−n−
−(n− −)

n− − }

Generally, the target of rounding functions is to convert
the scaled vector to an integer that can be represented
with limited number of bits. Let n denote the quantization
bit-width and assume that we adopt signed integers, then
the range set of rounding functions should be ,

, , , , . Hence regardless of the round-
ing function used, outlier values need to be coped with
through clipping mechanism:

Round(x) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− n−, if x ⩽ −n−,

n− − , if x ⩾ n− − ,
NR(x) or SR(x), otherwise.

3.2. Stochastic rounding: implementation

Despite the fact that SR is not hard to understand, to im-
plement it could be another problem, as a 1-bit random num-
ber generator with a floating-point possibility value will be
needed. Needless to say, such a module would be a huge chal-
lenge for hardware designers, especially for those who wish
to get rid of floating-point arithmetic. However, if we think
about the SR carefully, the randomness within rounding possib-
ilities can be exploited in another equivalent way. Consider a
random value that obeys the uniform distribution:

ε ∼ U(,).
Then the SR function can be equivalently expressed

as[17]:

SR(x) = ⌊x + ε⌋ .
ε

It should be noted that the equivalence can be easily
proved statistically. Consider the value of in a random experi-
ment, it is obvious that:

ε ∈ { [, − {x}), w.p. − {x},[− {x},), w.p. {x}, such that

x + ε ∈ { [x, + ⌊x⌋), w.p. − {x},[+ ⌊x⌋ , + x), w.p. {x}.
In this way, the SR function can be further expressed as fol-

lowing:

SR(x) = ⌊x + ε⌋ = { ⌊x⌋ , w.p. − {x},⌊x⌋ + , w.p. {x}.
ε

This is exactly the same as the original definition. To
some degree, the merit of adopting additive uniform noise
lies in that probability is exploited in an implicit way. Instead
of the complicated 1-bit random generator with an arbitrary
possibility ranging from 0 to 1, an ordinary uniform random
number generator will be enough to implement the stochast-
ic feature, which can be realized by utilizing some existing
hardware libraries.

3.3. Stochastic rounding analysis

Recently, stochastic rounding has been widely accepted
as an effective strategy to acquire better performance in quant-
ized DCNNs[13, 17, 18]. Yet there have been scant works trying
to reveal the reason behind the success of SR. One notice-
able progress[7] is that theoretically analyzed the conver-
gence of SR, along with its limitations[7]. In this work, we try
to explain from an empirical perspective and put our emphas-
is on the necessity to replace NR with SR.

As is claimed in DoReFa-Net[14], to achieve better perform-
ance, gradients need to be allocated with wider bit-width
and should be stochastically quantized. Moreover, it can be
summarized from our experiments that applying SR to the
quantization of gradients actually helps to stabilize the gradi-
ent descent process. As a result, the initial learning rate can
be set to a bigger value to avoid the local optimum phe-
nomenon.

X
To better understand the mechanism, consider a toy ex-

ample where is a random variable that obeys a normal distri-
bution:

X ∼ N(,).
We take X as an example to simulate the scaled paramet-

ers within the quantized DCNN. Assume that the quantiza-
tion bit-width is 4, so we have 16 discrete outcome in total.
During simulation, we generate 1000 value according to the
normal distribution which are then taken as the input of both
NR and SR. Figs. 1 and 2 summarize the results of simulation.

As is depicted in Figs. 1 and 2, SR enables an input scalar
to have multiple corresponding symbols in the codebook,
which essentially enhances the flexibility of quantization. Un-
like NR which deterministically generates the outcome, SR ran-

N
R

 (
x

)

x

8

6

4

2

0

−2

−4

−6

−8

−10
−10 −8 −6 −4 −2 0 2 4 6 8 10

Fig. 1. NR simulation.

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

−.

domly determines whether to round up or down. Most import-
antly, it should be noted that SR helps to compensate the van-
ished values, which is particularly significant in gradient quant-
ization. Consider an item of a gradient tensor whose value
lies in the interval (, 0.5], if we apply NR to it, the out-
come will be undoubtedly 0, which means the value will
simply vanish and will have no influence on the update of
parameters to be learned. However, SR will make a differ-
ence, since apart from 0, the outcome can be either –1 or 1,
which will ultimately contribute to the learning phase. It
should be noted that, in fully quantized networks, the noise ef-
fect incurred by quantization could be accumulated layer by
layer, and lead to an unacceptable drop of classification accur-
acy on the whole. Hence, preventing small values from vanish-
ing is extremely important in the training process.

To further evaluate the influence of different rounding
functions, we carry out experiments on AlexNet and
ResNet18 to compare the classification accuracy with NR and
SR, respectively. In order to provide a fair comparison, we guar-
antee that all the training hyperparameters are the same and
the only difference is the rounding function. The correspond-
ing results are summarized in Table 1.

As is shown in Table 1, rounding function can affect the
classification accuracy greatly in AlexNet, which is consistent
with our analysis and simulation. We also notice that round-
ing function has a relatively slight impact on ResNet-18,
which is probably the consequence of the residual block that
enhances the gradient value in back propagation.

4. Experiments

In this section, the proposed fully quantized network is
evaluated on several prevalent CNN models and datasets.
Furthermore, we have performed evaluations on some transla-
tion models to study the feasibility of limited precision train-
ing on other tasks. Our implementation is released in PyT-
orch.

4.1. CIFAR-10

With 50 000 training images from 10 categories and

 × −

10 000 validation images, CIFAR-10 is chosen as a small-size
dataset to test the performance of quantized models. We
quantize all parameters (W, A, G) using 8-bit DFP in both for-
ward pass and backward pass. All parameters are rounded
with NR, except for the gradients exploiting SR. A single
NVIDIA GeForce GTX 1080Ti GPU card is used for execution
and the batch size is 128. The initial learning rate is 0.1, then
decay in cosine annealing manner over 150 epochs. We ad-
opt SGD optimizer with the momentum value being 0.9. We
use weight decay as well and the value is set to .
Both ResNet-20 network and ResNet-56 network are tested. Ta-
ble 2 shows their top-1 accuracy of full-precision and low-preci-
sion networks, respectively.

It can be concluded that fully quantized networks can
achieve almost identical classification accuracy to its single-pre-
cision counterparts, even in deep networks like ResNet-56.
We believe that such results mainly benefit from the small
size of CIFAR-10 dataset and the corresponding limited num-
ber of classification categories. To test the stability and per-
formance of fully quantized networks, the evaluation on a lar-
ger dataset would be more effective.

4.2. ImageNet

ImageNet (ILSVRC2012) is another benchmark chosen in
our evaluations, which has ~1.28 × 106 training images from
1000 categories and 50 000 validation images. Similarly, we
quantize all parameters (W, A, G) using 8-bit DFP in both for-
ward pass and backward pass. All parameters are rounded
with NR except for the gradients, which adopt SR. Since im-
ages in ImageNet dataset belong to as many as 1000 categor-
ies, the average predicted probabilities will be two orders of
magnitude smaller than those in CIFAR-10. To cope with this is-
sue, we set the quantization bit-width in the last fully-connec-
ted layer to 16-bit, such that the codebook is expanded signi-
ficantly and the extremely small values can be approximated
more precisely.

 ×
A group of 8 NVIDIA Tesla V100 GPU cards are used for ex-

ecution and the batch size is 256 (). The learning rate
of full-precision network starts at 0.1, while we found the
best initial learning rate of low-precision model that can con-
verge is 0.05. The decay of learning rate still follows cosine an-
nealing manner over 120 epochs. We adopt SGD optimizer
with the momentum value being 0.9. We use weight decay
as well and the value is set to 1 × 10–4. Several popular net-
works are tested, namely AlexNet, ResNet-18, ResNet-50 and In-
ception V3. Table 3 shows their top-1 accuracy of full-preci-
sion and low-precision networks, respectively. (Note: The 32-
bit accuracy is directly obtained from our PyTorch implementa-
tion under the same hyperparameters as 8-bit model, which

Table 1. Top-1 accuracy of 8-bit AlexNet and ResNet18, SR versus NR.

Model 8-bit model (SR) 8-bit model (NR) Acc. Drop

AlexNet 54.34% 52.46% 1.88%
ResNet-18 65.96% 65.72% 0.24%

Table 2. Top-1 accuracy on CIFAR-10 dataset.

Model Full 8-bit model Acc. Drop

ResNet-20 92.24% 92.12% 0.12%
ResNet-56 94.14% 93.75% 0.39%

Table 3. Top-1 accuracy on ImageNet dataset.

Model Full 8-bit model Acc. Drop

AlexNet(DoReFa[14]) 55.9% 53.0% 2.9%
AlexNet 54.76% 54.34% 0.42%
ResNet-50 75.46% 74.14% 1.32%
Inception V3 76.95% 75.03% 1.92%

S
R

 (
x

)

x

8

6

4

2

0

−2

−4

−6

−8

−10
−10 −8 −6 −4 −2 0 2 4 6 8 10

Fig. 2. SR simulation.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404 5

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

is slightly lower than the corresponding accuracy provided in
the official documents)

As can be observed from Table 3, fully quantized net-
works targeting ImageNet suffer from greater accuracy degrad-
ation. With the topology going deeper, the degradation
could be even larger. Unfortunately, there are very few re-
lated works to compare with, since many works on low-preci-
sion networks are merely quantized on the inference phase.
As for fully-quantized networks, some use very different bit-
width for W, A and G.

We noticed that in DoReFa networks, there is one in-
stance of AlexNet where W, A and G are all quantized with 8-
bit and the ultimate accuracy drop is 2.9%. In our experi-
ment, we achieve only 0.42% accuracy drop. Please note that
in terms of full-precision AlexNet, our accuracy is slightly
lower than that given by DoReFa-Net. The resaon is that our
network is consistent with the official implementation from Py-
Torch library[19], which does not include the batch norm lay-
er. Even so, given the fact that DoReFa requires the first in-
put layer and the last layer to stay completely unquantized,
this is actually a remarkable improvement. We owe the suc-
cess to DFP quantization algorithm and the exploration of op-
timal training hyperparameters.

To be more specific, DoReFa-Net adopted linear quantiza-
tion for the gradient, which is similar to the aforementioned
linear method. In practice, such method can lead to signific-
ant deviation caused by some outliers, especially when it
comes to the gradient. Consequently, the quantized gradient
makes it more difficult to converge, which leads to higher
drop in classification accuracy.

4.3. Translation model

To demonstrate that our quantized training framework
can be applied to deep networks other than CNNs, we imple-
ment a recurrent neural network (RNN) using DFP. We con-
sider a GNMT model[20] for machine translation based on the
open source implementation of NVIDIA[21]. The network con-
tains a 4-layer encoder and a 4-layer decoder with attention
modules[22]. The network is trained and evaluated using an
English-German translation dataset, and the evaluation met-
ric is the BLEU score[23]. The quantized GNMT model uses 8-
bit DFP except the last layer of the decoder, which uses 16-
bit DFP. The training strategies are the same as Ref. [16]. Our
experiment showed that the 8-bit GNMT model achieves a
BLEU score of 24.05 on the test set, which is closed to 24.46
achieved by a full precision model.

5. FPGA prototyping

5.1. Whole structure

According to the proposed quantization algorithm, we im-

plement the FPGA prototype using Vivado HLS. The design
consists of a central controller and several modules corres-
ponding to different layers. We adopt the layers in Caffe frame-
work. There are totally eight types of layers, namely convolu-
tion, batch normalization, scale, relu, pooling, element-wise
(eletwise), fully-connected, and softmax. For each type of lay-
er, different modules handle the forward pass, backward
pass, weight update and bias update, etc. The central control-
ler coordinates the execution of all the modules in a layer-by-
layer fashion. Fig. 3 shows all the modules we have implemen-
ted to support the popular neural networks. Totally 21 mod-
ules are implemented. Each kind of layer holds a forward mod-
ule and a backward module for activation and gradient calcula-
tion in the forward pass and backward pass, respectively.
Only convolution, fully-connected and scale layers have the ad-
ditional weight and bias update modules since they are
equipped with weights and bias. Only one module handles
the softmax related calculation. The softmax module takes
the activation from its preceding layer as input, calculates the
gradients for back propagation according to the ground-
truth labels, and generates the softmax outputs.

The whole design structure is shown in Fig. 4. The instruc-
tion table defines the information for execution of each layer.
During training, the central controller fetches the instruction
for one layer each time and activates the corresponding mod-
ules. After the modules complete execution, the central con-
troller fetches the instruction of the next layer, and coordin-
ates the execution in such a layer-by-layer fashion. In the for-
ward pass, the central controller fetches the instructions from
smaller index to larger index, where the smaller index indic-
ates the layer close to the beginning of the neural network.
After the forward pass, the central controller will start the back-
ward pass to fetch the instructions from larger index to smal-
ler index, so that the layers can be executed reversely for
back propagation. In the forward pass, the forward module is
activated for the layer while in the backward pass, the back-
ward module, weight update module and bias update mod-
ule will be activated one by one. At a specific time spot, only
one module is running in our design. During the execution of
each module, the module will get the address offset for its re-
lated data from the central controller according to the corres-
ponding instruction. The module loads and stores its related
data, such as the activations, gradients, weights, bias, etc.,
from and to the off-chip DDR through the load and store inter-
face during execution.

5.2. Instruction table

The instruction table is stored as an array to define the
neural network structure, where each row of the array is one in-
struction and corresponds to one layer in the neural network.
The content of the instruction indicates the specification of

Module pool

Relu_Forward

Relu_Backward

Softmax

EletWise_Forward

Eletwise_Backward

Conv_Forward

Conv_Backward

Conv_WeightUpdate

Conv_BiasUpdate

FC_Forward

FC_Backward

FC_WeightUpdate

FC_BiasUpdate

Scale_Forward

Scale_Backward

Scale_WeightUpdate

Scale_BiasUpdate

BN_Forward

BN_Backward

Pool_Forward

Pool Backward

Fig. 3. Execution modules.

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

the layer. Each instruction specification contains the informa-
tion for the type of the layer, the parameters of the layer in-
cluding channel numbers, padding size, stride size, kernel
size, etc., the top and bottom layer ID connected to this layer,
etc. Through the top and bottom layer specification, the con-
nections in the neural network can be defined. All the re-
lated data for each layer including the activations in the for-
ward pass, the gradient in the backward pass, the weights
and the biases are stored in the off-chip DDR with specific ad-
dress offsets. The address offsets are also contained in the in-
struction table, so that the corresponding module can access
the related data in the DDR. For the layers with direct connec-
tions, the address offset of their input and output data are
the same, so that the data communications between layers
are achieved in a shared memory way. We develop a com-
piler to compile the network specification from an Caffe pro-
totxt file into the instruction table. A Caffe prototxt file
defines the network structure with specified layers and their
connection relationships. During the training, when the cent-
ral controller activates each module, it will also set the re-
quired parameters for the module from the instructions, such
as channel numbers, padding size, stride size, kernel size, etc.

5.3. Data format

According to our algorithm, we keep each weight and bi-
as as two versions, floating-point and 8-bit dynamic fixed
point. Floating-point version is used to be updated in the back-
ward pass for the accuracy, then it is quantized to 8-bit for all
the other computing with increased computing efficiency.
The activations in forward pass and gradients in backward
pass are represented in 8-bit dynamic fixed point for most lay-
ers, which is strictly in consistency with our PyTorch imple-
mentation. Therefore, in the forward pass and backward pass
module, the inputs are all 8-bit dynamic fixed point data and
the calculation can be simplified to 8-bit operations. Then the
results are quantized back to 8-bit dynamic fixed point data
as the output from the module. For each weight and bias up-
date module, the gradients and activations used as the calcula-
tion input have been already quantized into 8-bit dynamic
fixed point in previous forward pass and backward pass execu-
tions. These 8-bit data are used to calculate for updating the
32-bit floating point weights and bias. After the execution of
weight and bias update modules, the corresponding floating
point version weights and biases in the DDR will be updated.
Then the corresponding weights and bias in 8-bit dynamic
fixed point version will be also updated according to the up-
dated floating point version.

We adopt the SGD optimizer with momentum for up-
date, hence a historical value for momentum should be kept
for each weight and bias, which is stored in single precision

floating-point for accuracy. Through quantization to 8-bit dy-
namic fixed point, the multiply-and-add (MAC) operations in
convolution, fully-connected and scale layers can be simpli-
fied to 8-bit calculation with better efficiency in both speed
and resource. To further enhance the computing efficiency,
the computation-intensive modules are executed with high
parallelism in both batch dimension and output channel di-
mension. For example, in the forward pass module of convolu-
tion, the calculation for several images in the batch are ex-
ecuted simultaneously and the results for multiple number of
output channels are executed at the same time. For the soft-
max and batch normalization layers, due to the complex expo-
nential and square root functions, 32-bit floating point data is
required to do both the forward pass and backward pass calcu-
lation. Since the activations and gradients are 8-bit, for these
two layers, we first convert the 8-bit input back to floating
point, do the calculation, and then convert the floating point
data as 8-bit dynamic fixed point output.

5.4. Module design example

We explore the parallelism in the module design for com-
puting efficiency. For main computing layers such as convolu-
tion, fully connected, scale, relu, etc., we perform the parallel
execution in two dimensions, the batch dimension and out-
put channel dimension. At the same time, we calculate for
PARA number of output channels and calculate for all the im-
ages in the batch. Therefore, the parallelism is PARA × Batch
Size is our case. Fig. 5 shows the basic structure for the convo-
lution forward pass module as an example. Each execution
unit (EU) is in charge of the calculation for one output chan-
nel. Inside each EU, Batch Size number of calculations are per-
formed in parallel. Each EU calculates the output at the same
(x,y) position in the image simultaneously, thus they can
share the input data with different weights and bias. In this
way, we can achieve high parallelism with reduced data load
overhead. To support such parallelism and batch calculation,
we organize the activations and gradients in [height, width,
channel, batch] fashion to provide the data loading and stor-
ing with more locality for better efficiency. After the calcula-
tion, the output data will be passed to the quantization unit
before to DDR. The quantization unit will quantize the 32-bit
integer result from the MAC operation back to 8-bit dynamic
fixed point. The design concept and overall structure of the
other modules are basically the same as this example. For
some layers, such as batch normalization and softmax, the
quantization unit should be also designed at the input buf-
fer to convert the 8-bit dynamic fixed point back to floating-
point first for calculation. For the weight and bias update mod-
ules, both quantized output for 8-bit version and non-quant-
ized output for the floating-point version will be sent to the
DDR.

5.5. Random number generator

The random number generators used in the quantiza-
tion unit for the stochastic rounding are designed as a 16-bit
linear-feedback shift register to generate pseudo random num-
bers with a given seed. The generator is shown in Fig. 6. The
16 bit data is first set to a seed value. Then each time the 16-
bit value does a right-shift operation with the XOR result
from four of its bits as the new leftmost bit value. Such a lin-
ear-feedback shift register can guarantee good randomness.
In our design, different random number generators will get dif-

Central controller

Load interface Store interface

Module 0 Module 1 Module 20

Ins table

DDR

…

Fig. 4. Whole design structure.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404 7

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

ferent random seeds. Moreover, at each training iteration, the
seeds will be reset as different 16-bit random numbers to the
whole design as a parameter, to further ensure the random-
ness. During the experiments, we have also verified the good
randomness of the generated random numbers. The quantiza-
tion follows the stochastic rounding strategy and dynamic
fixed point representation. Since stochastic rounding is only
needed in the backward pass, the random number generat-
ors are only set in the backward modules. After the main calcu-
lation of the module, such as the EU parts in the backward con-
volution module, the calculated results are sent to the quantiz-
ation unit in a sequential manner. Each result will go through
the stochastic rounding using one random number from a ran-
dom number generator in the quantization unit. Totally, 7 ran-
dom number generators are needed, which saves the re-
source usage and reduces design complexity. However, such
a sequential quantization design may affect the whole throu-
ghput, which can be further improved in the future work.

5.6. Implementation results

The whole FPGA design shows the same functionality as
the python code, with the same outputs and training ability.
We map the ResNet50 design from the Caffe prototxt file
onto Vertix Ultrascale+ XCVU9P FPGA with the clock rate be-
ing 200 MHz. The observed peak throughput can be as large
as 102 GOPS. The resource usage is as in the Table 4. The paral-
lel degree of this implementation is 16 × 16, which means
the parallelism is 16 in the batch dimension and 16 in the out-
put channel dimension. All the modules for different layers
are implemented on the FPGA at the same time while only
one module is running at one time, therefore the peak
throughput is limited. Pipelining among different layers in

the layer-fusion style can be considered to further improve
the design, although which is quite complicated and beyond
the scope of this work. Without quantization, the design can-
not achieve the parallelism of 16 × 16 due to the lack of DSPs
since all the operations are in floating point with the de-
mand of using DSP. Through quantization using 8-bit dynam-
ic fixed point in our design, the resource usage demand is de-
creased by a large degree to enable larger parallelism.

In summary, DFP quantization reduces the resource us-
age significantly. For example, for a convolution layer, our
design with quantization reduces the number of DSP usage
from 5124 to 48 (by 106x), reduces the BRAM block usage
from 162 to 82 (by 1.97x), reduces the FF usage from 466926
to 74933 (by 6.23x), reduces the LUT usage from 412630 to
141828 (by 2.9x). Hence, with quantization, our low bitwidth
training scheme can explore more parallelism with limited re-
source to boost the performance. The current FPGA prototyp-
ing is relatively simple without further optimization, since our
work mainly focuses on the algorithm level. Further optimiza-
tion of the hardware implementation are left as future work
to further improve the throughput.

6. Discussion and future work

In this work, we develop and implement fully quantized
DNN with minimum accuracy degradation. We find DFP to be
an appropriate quantization method that is both hardware-
friendly and well-performed in numerical approximation. Our
FPGA based prototype proved that the design works cor-
rectly and the training scheme can be mapped to hardware ef-
ficiently. The required hardware resource can be dramatically
decreased without noticeable drop in performance. However,
there is large room to improve the design and hardware imple-
mentation in the future works.

Theoretical analysis. In this work, we show the benefits
of stochastic rounding over the nearest rounding through sim-
ulation and experiments. However, we believe some theoretic-
al analysis regarding the comparison will be more convin-

Table 4. Resource usage of FPGA prototyping.

Parameter BRAM DSP FF LUT

Used 238 610 434213 564233
Percentage 5% 8% 18% 47%

*+ Partial
result

Weight

EU0

*+ Partial
result

Weight

EU1

*+ Partial
result

Weight

EU PARA

…

Quantization Input buffer

Fig. 5. Module structure example.

bit14 bit13 bit1 bit0bit12 bit11 …

XOR

bit15

Fig. 6. Random number generator.

8 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

cing and solid. Similar to Ref. [7], this may include conver-
gence analysis, mathematical modeling, etc.

Quantization methods. As mentioned previously, there
are various quantization functions with their respective pros
and cons. Despite DFP works fine in our design, it is not cer-
tainly to be the optimal method. For example, it is argued
that feature maps and parameters to be quantized in net-
works do not obey symmetrical distribution around zero[11]. Ad-
aptive methods which can dynamically adjust the mapping
function and more sophisticated quantization schemes might
become better solutions in the future.

FPGA implementation optimization. Fully quantized
low-precision networks are expected to be implemented on
embedded systems in the end. In this work, we studied the
design methodology of FPGA implementation and designed
a simple prototype, while there is still a large room left for
optimization. In the future work, deeper pipelining, fusion
of layers, and the reduction of SR overhead need to be fur-
ther explored to significantly improve the throughput of the
design.

7. Related works

The research regarding low precision neural networks
has been attractive over last several years. BinaryConnect[24]

is thought to be the first attempt to quantize contemporary
neural networks, where only weights are binarized. BinaryCon-
nect achieves identical accuracy to full precision networks on
CIFAR-10. BNN[25] further binarize both weights and activa-
tions and the evaluation shows little accuracy drop as well.
Challenging large dataset and deep architectures with quant-
ized networks was pioneered by XNOR-Net[26]. However,
XNOR-Net find that binarizing activations in addition to
weights could introduce an accuracy drop which is as large
as 12.4%.

W < A < G

Such results naturally arouse a question: Which kind of
parameters (i.e. W, A, G) in neural networks should we alloc-
ate more number of bits to prevent severe degradation in ac-
curacy? DoReFa-Net[13] answers the question and managed
to draw a conclusion: The order of required quantization bit-
width among parameters is .

In addition, Wage[27] also targets quantized neural net-
works for both training and inference, where batch-normaliza-
tion (BN) is replaced by constant scaling factors to improve
regularization. The erasing of BN actually removes a huge
obstacle in quantized networks.

In terms of works closely related to stochastic rounding,
HALP[18] takes inspiration from SR to propose a novel low-preci-
sion SGD optimizer. Lin and Talathi investigate the diffi-
culties of training low-precision networks and provides more
complementary techniques that are orthogonal to SR to com-
bat the instability and improve the training outcome[28].

8. Conclusion

In this paper, we investigate various quantization meth-
ods to find DFP that is both effective and hardware-friendly.
Additionally, stochastic rounding is analyzed through simula-
tion and experiments to uncover the reason behind its suc-
cess. Most importantly, we build fully quantized neural net-
works released in PyTorch and evaluated its performance. To
the best of our knowledge, we are the first work to achieve 8-
bit DCNN as deep as ResNet-50 and Inception V3 with less

than 2% accuracy drop. In addition, an 8-bit GNMT model is de-
veloped to test its performance on machine translation appli-
cations. Compared to the full precision model whose BLEU is
24.46, we achieve a very close 24.05 BLEU on the test set.
Moreover, we designed a simple prototype on FPGA by
Vivado HLS, which is an essential step towards ultimate deploy-
ment of quantized neural networks on hardware. It is demon-
strated that our fully quantized network helps to reduce the
computing resources significantly. Last but not the least, we
realize that there remains problems to be solved, like theoretic-
al analysis of rounding scheme, more effective quantization
method, and hardware implementation optimization to be ex-
plored to realize an efficient mapping of the whole design on
embedded platforms.

Acknowledgements

This work is supported by Huawei.

References

Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual re-
cognition challenge. Int J Comput Vision, 2015, 115(3), 211

[1]

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with
deep convolutional neural networks. Adv Neural Inform Process
Syst, 2012, 1097

[2]

He K, Zhang X, Ren S, et al. Deep residual learning for image recog-
nition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, 770

[3]

Han S, Pool J, Tran J, et al. Learning both weights and connec-
tions for efficient neural network. Adv Neural Inform Process Syst,
2015, 1135

[4]

Parashar A, Rhu M, Mukkara A, et al. Scnn: An accelerator for com-
pressed-sparse convolutional neural networks. 2017 ACM/IEEE
44th Annual International Symposium on Computer Architec-
ture (ISCA), 2017, 27

[5]

Han S, Liu X, Mao H, et al. EIE: efficient inference engine on com-
pressed deep neural network. ACM/IEEE 43rd Annual Internation-
al Symposium on Computer Architecture (ISCA), 2016, 243

[6]

Li H, De S, Xu Z, et al. Training quantized nets: A deeper under-
standing. Adv Neural Inform Process Syst, 2017, 5811

[7]

Lu Z, Rallapalli S, Chan K, et al. Modeling the resource require-
ments of convolutional neural networks on mobile devices. Pro-
ceedings of the 25th ACM International Conference on Multime-
dia, 2017, 1663

[8]

Courbariaux M, Bengio Y, David J P. Training deep neural net-
works with low precision multiplications. arXiv preprint arXiv:
1412.7024, 2014

[9]

Nielsen M. How the backpropagation algorithm works. Retrieved
from http://neuralnetworksanddeeplearning.com/chap2.html

[10]

Miyashita D, Lee E H, Murmann B. Convolutional neural networks
using logarithmic data representation. arXiv preprint arXiv:
1603.01025, 2016

[11]

Cai Z, He X, Sun J, et al. Deep learning with low precision by half-
wave gaussian quantization. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, 5918

[12]

Zhou S, Wu Y, Ni Z, et al. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv pre-
print arXiv: 1606.06160, 2016

[13]

Banner R, Hubara I, Hoffer E, et al. Scalable methods for 8-bit train-
ing of neural networks. Adv Neural Inform Process Syst, 2018,
5145

[14]

Hubara I, Courbariaux M, Soudry D, et al. Quantized neural net-
works: Training neural networks with low precision weights and ac-
tivations. J Mach Learning Res, 2017, 18(1), 6869

[15]

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404 9

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

http://dx.doi.org/10.1007/s11263-015-0816-y
http://neuralnetworksanddeep-learning.com/chap2.html
http://dx.doi.org/10.1007/s11263-015-0816-y
http://neuralnetworksanddeep-learning.com/chap2.html

Gupta S, Agrawal A, Gopalakrishnan K, et al. Deep learning with
limited numerical precision. International Conference on Ma-
chine Learning, 2015, 1737

[16]

De Sa C, Feldman M, Ré C, et al. Understanding and optimizing
asynchronous low-precision stochastic gradient descent. ACM SIG-
ARCH Computer Architecture News, 2017, 45, 461

[17]

De Sa C, Leszczynski M, Zhang J, et al. High-accuracy low-preci-
sion training. arXiv preprint arXiv: 1803.03383, 2018

[18]

Chintala S, Gross S, Yeager L, et al. Alexnet. Retrieved from
https://github.com/pytorch/vision/blob/master/torchvision/mod
els/alexnet.py

[19]

Wu Y, Schuster M, Chen Z, et al. Google’s neural machine transla-
tion system: Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv: 1609.08144, 2016

[20]

nvpstr. (2019, July 17). GNMT v2 for PyTorch. Retrieved from ht-
tps://github.com/NVIDIA/DeepLearningExamples/tree/master/Py
Torch/Translation/GNMT

[21]

Bahdanau D, Cho K, Bengio Y. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:

[22]

1409.0473, 2014

Papineni K, Roukos S, Ward T, et al. BLEU: a method for automat-

ic evaluation of machine translation. Proceedings of the 40th An-

nual Meeting on Association for Computational Linguistics, 2002,

311

[23]

Courbariaux M, Bengio Y, David J P. Binaryconnect: Training deep

neural networks with binary weights during propagations. Adv

Neural Inform Process Syst, 2015, 3123

[24]

Hubara I, Courbariaux M, Soudry D, et al. Binarized neural net-

works. Adv Neural Inform Process Syst, 2016, 4107

[25]

Rastegari M, Ordonez V, Redmon J, et al. Xnor-net: Imagenet classi-

fication using binary convolutional neural networks. European

Conference on Computer Vision, 2016, 525

[26]

Wu S, Li G, Chen F, et al. Training and inference with integers in

deep neural networks. arXiv preprint arXiv: 1802.04680, 2018

[27]

Lin D D, Talathi S S. Overcoming challenges in fixed point train-

ing of deep convolutional networks. arXiv preprint arXiv:

1607.02241, 2016

[28]

10 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022404

C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple
https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple
https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple
https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://g-ithub.com/pytorch/vision/blob/master/torchvis
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple
https://github.com/NVIDIA/DeepLearningExam-ple

