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Abstract: The high performance of the state-of-the-art deep neural networks (DNNs) is acquired at the cost of huge consump-
tion of computing resources. Quantization of networks is recently recognized as a promising solution to solve the problem and
significantly reduce the resource usage. However,  the previous quantization works have mostly focused on the DNN inference,
and  there  were  very  few  works  to  address  on  the  challenges  of  DNN  training.  In  this  paper,  we  leverage  dynamic  fixed-point
(DFP)  quantization  algorithm  and  stochastic  rounding  (SR)  strategy  to  develop  a  fully  quantized  8-bit  neural  networks  target-
ing  low  bitwidth  training.  The  experiments  show  that,  in  comparison  to  the  full-precision  networks,  the  accuracy  drop  of  our
quantized convolutional neural networks (CNNs) can be less than 2%, even when applied to deep models evaluated on Image-
Net dataset. Additionally, our 8-bit GNMT translation network can achieve almost identical BLEU to full-precision network. We fur-
ther implement a prototype on FPGA and the synthesis shows that the low bitwidth training scheme can reduce the resource us-
age significantly.
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1.  Introduction

The  past  years  have  seen  a  great  success  of  deep  neural
network  (DNN),  especially  when  it  comes  to  using  the  CNNs
for typical computer vision tasks, such as image classification,
pattern  recognition,  object  detection  and  so  forth.  However,
one commonly ignored fact is that, in the most cases, such re-
markable  performance  is  obtained  at  the  cost  of  huge  con-
sumption of computing resources. With the topology of neur-
al network going deeper, the case could be even worse. Take
the  CNN  model  from  ILSVRC[1] as  an  example,  compared  to
AlexNet[2], ResNet152[3] improved the top-5 classification accur-
acy by ~11.7%, while the running FLOPs soared to more than
10x. As a result, the training and inference of the state-of-the-
art models suffered from large resource requirement and poor
energy  efficiency.  Moreover,  the  training  phase  can  last  for
weeks  because  of  the  sophisticated  model  architecture  and
the time-consuming floating-point arithmetic operations. The
floating-point  operations  are  also  unfriendly  to  the  hardware
accelerations on ASIC or FPGA. To address this problem, mod-
el  compression  has  been  proposed,  which  helps  to  drastic-
ally  reduce  the  arithmetic  complexity  and  thus  alleviate  the
computing workload.

Recent  works  on  model  compression  basically  lie  in  two
categories:  pruning  and  quantization.  Pruning  means  that
there  is  sufficient  redundancy  in  common  DCNN  models[4],
hence  a  number  of  weights  can  be  eliminated  from  neuron
connection[5, 6]. However, since pruning introduces some irreg-

ular  connections  between  neurons,  the  dataflow  in  the  feed-
forward  pass  has  to  be  rearranged  in  order  to  organize  the
whole  process  correctly  and  efficiently,  which  usually  re-
quires dedicated hardware design on ASIC or FPGA platform.

As for quantization, instead of using single-precision float-
ing-point  format,  it  represents  weights  (W),  activations  (A)
and  gradients  (G)  with  limited  numerical  bit-width.  In  this
way, quantized networks are enabled to replace the time-con-
suming  floating-point  processing  elements  with  integer-
based  arithmetic  units,  therefore  the  amount  of  operations
can be dramatically reduced. In the meanwhile, as a byproduct of
limited  bit-width  representation,  the  demand  for  storage
will  shrink  greatly,  which  is  quite  an  appealing  feature  since
the  size  of  parameters  in  recent  networks  can  be  as  large  as
~10 M. Based on the way of generating quantized neural net-
work  parameters,  related  works  can  be  further  classified  into
two types:  quantizing with pre-trained networks and training
from  scratch[7].  It  is  obvious  that  the  former  ones  still  rely  on
high-precision networks, and they are mainly targeting the in-
ference phase in deployment. To equip edge devices with com-
plete  ability  to  perform  both  training  and  inference,  the  lat-
ter  ones,  also  known  as  fully  quantized  networks,  deserve
more efforts.

In the era of IoT, deep learning techniques have been ex-
pected  to  be  applied  in  wide  industrial  scenarios,  yet  high
power demand and poor energy efficiency remain main barri-
ers  for  its  popularization.  Quantized  neural  networks  provide
a  promising  solution  to  solve  the  problem.  In  this  work,  we
aim  to  develop  a  quantized  training  flow  with  most  of  the
parameters  quantized  to  8  bits  and  train  the  network  from
scratch  under  a  very  limited  classification  accuracy  degrada-
tion. Our contributions can be summarized as follows:
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(1)  We  achieve  quantized  neural  networks  for  training
from  scratch  with  limited  classification  accuracy  degradation
for CNN.

(2) We evaluate the quantization scheme on a RNN mod-
el and obtain very similar outcome to its single-precision coun-
terpart.

(3) We develop a FPGA prototype to validate the feasibil-
ity of the proposed scheme and evaluate the resource usage.

A  lot  of  experiments  are  performed  on  prevalent  state-
of-the-art  DNNs  and  datasets.  It  is  demonstrated  that  we
achieve  0.12%  top-1  accuracy  drop  for  ResNet-20  on  Cifar-10
dataset.  We  achieve  0.42%  top-1  accuracy  drop  for  AlexNet.
We  achieve  1.31%,  1.92%  top-1  accuracy  drop  for  ResNet-50
and  Inception  V3  models,  respectively.  As  for  the  prototype,
the  synthesis  results  show  that  we  reduce  the  DSP  usage  by
×106, we reduce the BRAM usage by ×1.97, we reduce the FF
usage  by  ×6.23,  we  reduce  the  LUT  usage  by  ×2.9.  Besides,
for translation models, we achieve an 8-bit GNMT model with
24.05 BLEU, which is close to 24.46 achieved by a single-preci-
sion model.

2.  Quantization methods

Q

Among all  quantization methods,  the  basic  procedure  to
quantize  a  given  vector  (or  tensor) x is  to  perform  a  trans-
form function  upon it, which is called the quantization func-
tion. Assume that the original vector to be quantized is repres-
ented in 32-bit floating-point format, and our ultimate goal is
to  replace  it  with  8-bit  fixed-point  representation.  In  this
work, we choose the dynamic fixed-point (DFP) as our quantiz-
ation method.

In  this  section,  firstly,  the  details  of  the  DFP  quantization
algorithm are provided, including the basic principles of updat-
ing scale integers and the bit-width settings in the MAC opera-
tions  and  back  propagation  datapath.  Secondly,  some  other
typical  quantization methods are introduced and analyzed to
form  a  comparison  to  DFP.  The  strengths  and  weaknesses  of
different quantization methods are pointed out respectively.

2.1.  Dynamic fixed-point (DFP)

2.1.1.    Algorithm description

ex

Among all types of layers in DCNN, convolution layer and
fully-connected layer account for more than 90% of the com-
puting  time[8].  Therefore,  quantizing  feature  maps  and  para-
meters in these layers provides the most benefits.  In order to
quantize the tensors from 32-bit to 8-bit and keep the repres-
entation  precision  to  the  largest  extent,  we  use  the  dynamic
fixed-point  (DFP)  representation[9].  The  DFP  format  is  based
on fixed-point representation, while the scale factor is dynamic-
ally  adjusted.  Concretely,  each  element  of  a  tensor  in  DFP
format  is  represented  by  an  8-bit  signed  integer.  Meanwhile,
the  tensor  also  comes  with  a  signed  integer e representing
its  scale.  For  each  entry  of  this  tensor  with  value x (in  8-bit
signed integer),  the actual  value it  represents is  thus .  The
scale integer e is  updated constantly during the training pro-
cess.

{− ⋅ e − ⋅ e − ⋅ e . . .  ⋅ e  ⋅ e}
Given  the  scale e,  the  original  tensor  in  32-bit  floating-

point format is quantized to 8-bit DFP by approximating each
floating-point number to the closest representable DFP num-
ber,  i.e. , , , , , .
The  quantization  method  is  deterministic.  We  also  used
stochastic  quantization  (rounding)  for  the  representation  of

gradients, and the details are covered in Section 3.
e

e
e

e

The scale integer  is chosen such that the numerical resol-
ution is  as  high as  possible,  without  having overflow.  For  im-
plementation,  is chosen to be a fixed number at the start of
training.  For  every  training batch,  is  incremented if  there  is
an overflow in quantization, and  is decremented if doing so
does  not  lead  to  an  overflow.  According  to  Ref.  [9],  the  DFP
quantization scheme can be summarized as in Algorithm 1:

Algorithm 1 Dynamic fixed-point

Inputs:  tensor x to be quantized, scale integer ei w.r.t x in the
  ith iteration, overflow rate rmax

ei+ (i + )thOutput: updated scale integer  in the  iteration
rx x1: compute the overflow rate  for tensor 
rx x2: compute the overflow rate  for tensor 

rx > rmax3: if  then
ei+ ← ei + 4: 

rx ≤ rmax5: else if  then
ei+ ← ei − 6: 

7: else
ei+ ← ei8: 

9: end if

rmax = 

x̃ f

To  be  more  concrete,  we  set  the  overflow  rate .
Given  the  input  tensor x,  we  firstly  re-scale  it  to  another
tensor  through a mapping function : 

x̃ = f(x) = x / e.

[−n−, n− − ]Then,  with the quantization bit-width n,  let S denote the
interval ,  the  overflow  rate  of  input  tensor x
can be determined as follows: 

rx = { , if any entry of x̃ falls out of the interval S,
, if all entries of x̃ lie in the interval S.

e
Similarly,  one  can  compute  the  overflow  rate  of  2x.  In

this  way,  DFP  guarantees  that  the  scale  integer  is  neither
too big nor too small with respect to the input tensor x. Even-
tually,  when  the  training  is  done,  all  scale  integers  will  be
fixed for the inference stage.

2.1.2.    Bit-width settings
Both  convolution  and  fully-connected  layers  are  based

on  the  multiply-and-accumulate  (MAC)  operation.  Although
designing  an  algorithm  that  performs  both  multiplication
and accumulation in 8-bit is certainly beneficial, we choose to
perform 8-bit multiplication and 32-bit floating-point accumu-
lation. Since quantized networks mainly aim to reduce the con-
sumption of computing resources, the priority lies in the optim-
ization  of  32-bit  multiplications,  while  the  overhead  of  32-bit
addition  is  significantly  smaller  and  thus  acceptable.  In  this
way,  useful  information  can  be  preserved  with  a  minimized
computation workload to enable effective network learning.

In  terms  of  the  back-propagation  data  path,  all  paramet-
ers  are  kept  in  32-bit  floating-point  for  gradient  descent  and
update. However, following the spirit of minimizing computa-
tion complexity, we ensure that the operands of tensor multi-
plication are represented in 8-bit DFP. For example, consider-
ing  the  gradient  with  respect  to  the  weight  in  a  convolution
layer, which can be generated by the following formula[10]: 
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∂L
∂wl

jk

= al−k δ l
j.

al−k δ l
j

wl
jk

Here, the activation  and the error  are guaranteed to be
8-bit  DFP  such  that  the  multiplication  operation  can  benefit
from the efficient  integer  operation.  As  for  the gradient  w.r.t.
the  weight ,  it  is  represented  in  single  precision  floating-
point  and  will  be  directly  used  to  update  the  corresponding
weight.  Since  the  vanishing  of  the  gradient  is  particularly
severe  in  fully  quantized  networks,  representing  them  in  32-
bit  floating-point  format  is  necessary.  Nevertheless,  the  cost
is almost negligible.

To  sum  up,  DFP  algorithm  is  hardware-friendly  because
the quantized tensors can be represented with pure integers,
which  serve  as  the  operands  in  MAC  operations,  while  the
quantization  process  itself  introduces  no  complex  floating-
point operations like multiplications or divisions.

2.2.  Comparison with other quantization methods

Apart  from  DFP,  various  quantization  methods  have
been emerging over these years.  In some quantization meth-
ods,  the  numerical  resolution  between  adjacent  symbols  of
the codebook is  fixed,  whilst  in some others,  it  varies accord-
ing  to  the  mapping  function.  Accordingly,  a  method  can  be
categorized as either linear quantization or non-linear quantiza-
tion.

2.2.1.    Linear quantization
The  linear  quantization  is  a  method  where  the  resolu-

tion is fixed under the input tensor x. Intuitively, to approxim-
ate x with  a  finite  codebook,  the  discrete  values  can  be  uni-
formly  appointed  over  the  range  between  its  smallest  and
biggest  entries.  This  can  be  expressed  as  the  following  for-
mula[11, 12]: 

Q(x) = min(x) + step × Round(x −min(x)
step ).

Here,  Round()  is  the rounding function,  which will  be ex-
plained  in  Section  3. step is  the  fixed  interval  value  between
adjacent  discrete  values  and  is  computed  given  the  input
tensor x and the quantization bit-width n: 

step =
min(x) −min(x)

n − 
.

Apparently,  such  a  basic  linear  quantization  method  en-
ables  to  fit  the  value  of  input  tensor  automatically  without
the  extra  concern  about  dealing  with  an  overflow.  However,
the  method  is  inevitably  sensitive  to  any  outlier  in  the  input
tensor.  For  instance,  if  the  biggest  entry  deviates  from  the
second  biggest  entry  too  much,  the  above-mentioned  meth-
od will suffer from severe quantization noise.

2.2.2.    Non-linear quantization
In  contrast,  the  interval  values  between  adjacent  dis-

crete  symbols  are  different  in  non-linear  methods.  Logar-
ithmic  quantization[13] is  one  of  the  common  non-linear  al-
gorithms. The corresponding transformation function is: 

Q(x) = {, if scalar x = ,

x̂ ⋅ sgn(x), if scalar x ≠ .

Here, the quantization function performs element-wise op-

sgn(x)
x̂

erations. That is, for each entry of the input tensor x, the func-
tion treat  it  respectively.  The sign function  is  respons-
ible  for  determining  the  sign  of  scalar x,  and  the  output  is
either  1  or  –1.  In  the  end,  a  quantized  matrix  is  generated.
The calculation of  is  where the logarithmic arithmetic takes
place, namely: 

x̂ = Round(log(∣x∣)).
The  ultimate  goal  of  logarithmic  quantization  is  to  re-

place  the  complicated  MAC  operation  with  simple  bit-shift,
which  is  extremely  cheap  in  digital  circuit  design.  Un-
doubtedly,  logarithmic  quantization  helps  to  speed  up  the
MAC operations greatly, however, according to the experiment-
al results reported by Ref. [13], the drop of classification accur-
acy is typically greater than other methods. Moreover, the log-
arithmic arithmetic  itself  is  intrinsically  not  hardware-friendly,
which sets a barrier for deployment in embedded systems.

Other  non-linear  quantization  methods  introduce  differ-
ent  ways  to  establish  the  mapping  from  the  symbols  of  the
"codebook"  to  real  values.  Some  use  explicit  functions,  like
the tanh function that is used to quantize weights in DoReFa-
Net[14],  while  others  provide a  set  of  discrete  values  to  better
match  the  statistical  features  of  parameters.  Take  Ref.  [15]  as
an example, where Cai et al. investigate the distribution of net-
work  activations  in  order  to  devise  an  half-wave  Gaussian
quantizer,  which  is  used  to  approximate  activations  and  can
alleviate the gradient mismatch in back-propagation.

In  general,  although  non-linear  methods  have  their
unique  advantages,  the  incurred  non-linear  operations  are
too  expensive  in  most  cases.  Under  a  fixed  quantization  bit-
width,  linear methods could bring a better trade-off  between
the performance and hardware resources cost.

3.  Stochastic rounding

f

Obviously,  with  the  reduction  of  bit-width,  the  numeric-
al  resolution  inevitably  goes  down  to  some  extent.  In  fact,
the quantization function can be conceptually decomposed in-
to  two  separate  steps.  In  the  first  step,  as  is  aforementioned
in  Section  2,  the  vector x is  mapped  to  a  proper  interval  via
scaling : 

f ∶ x → x̃.

x̃ ⌊x̃⌋{x̃}
Following the  notation of  the  Number  Theory,  we divide

the  scaled  tensor  into  its  integer  part  and  its  fraction
part , such that: 

x̃ = ⌊x̃⌋ + {x̃}.⌊x̃⌋Actually,  the  integer  part  corresponds  to  the  8-bit
fixed-point representation without a decimal point,  while the
fraction  part  will  be  discarded  and  that  is  where  the  preci-
sion loss exists.

x x̃⌊x̃⌋ ⌊x̃⌋
x̃

After  re-scaling  the  original  tensor  to ,  the  second
step  is  to  approximate  the  fraction  part  to  0  or  1.  Finally,
the rounded bit  (0  or  1)  is  added back to the integer  part 
to  form the ultimate  8-bit  integer.  We define  the overall  pro-
cess  of  generating  the  low  bit-width  integer  from  re-scaled
tensor  as the Rounding function.

3.1.  Rounding function

Apparently, the most intuitive way to approximate a frac-
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tion  value  is  nearest  rounding  (NR),  which  means  the  out-
come will be the closest representable discrete value: 

NR(x) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⌊x⌋ , if  ⩽ {x} ⩽ 


,

⌊x⌋ + , if 

< {x} < .

However,  nearest  rounding  may  incur  severe  quantiza-
tion noise, which can be the major factor influencing the per-
formance  of  quantized  networks.  To  address  this  issue,
Stochastic  Rounding  (SR)[16] was  proposed.  Unlike  nearest
rounding,  stochastic  rounding  is  not  a  deterministic  round-
ing mode,  which means the result  can be different  over  mul-
tiple  attempts.  Specifically,  it  is  decided  by  both  input  value
and a computed probability: 

SR(x) = { ⌊x⌋ , w.p.  − {x},⌊x⌋ + , w.p. {x}.
x̃

{−n−
−(n− − ) . . .  . . . 

n− − }

Generally,  the  target  of  rounding  functions  is  to  convert
the  scaled  vector  to  an  integer  that  can  be  represented
with  limited  number  of  bits.  Let n denote  the  quantization
bit-width  and  assume  that  we  adopt  signed  integers,  then
the  range  set  of  rounding  functions  should  be ,

, , , , . Hence regardless of the round-
ing  function  used,  outlier  values  need  to  be  coped  with
through clipping mechanism: 

Round(x) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− n−, if x ⩽ −n−,

n− − , if x ⩾ n− − ,
NR(x) or SR(x), otherwise.

3.2.  Stochastic rounding: implementation

Despite the fact that SR is not hard to understand, to im-
plement it could be another problem, as a 1-bit random num-
ber  generator  with  a  floating-point  possibility  value  will  be
needed. Needless to say, such a module would be a huge chal-
lenge  for  hardware  designers,  especially  for  those  who  wish
to  get  rid  of  floating-point  arithmetic.  However,  if  we  think
about the SR carefully, the randomness within rounding possib-
ilities  can be exploited in another  equivalent  way.  Consider  a
random value that obeys the uniform distribution: 

ε ∼ U(, ).
Then  the  SR  function  can  be  equivalently  expressed

as[17]: 

SR(x) = ⌊x + ε⌋ .
ε

It  should  be  noted  that  the  equivalence  can  be  easily
proved statistically. Consider the value of  in a random experi-
ment, it is obvious that: 

ε ∈ { [,  − {x}), w.p.  − {x},[ − {x}, ), w.p. {x}, such that

x + ε ∈ { [x,  + ⌊x⌋), w.p.  − {x},[ + ⌊x⌋ ,  + x), w.p. {x}.
In this way, the SR function can be further expressed as fol-

lowing: 

SR(x) = ⌊x + ε⌋ = { ⌊x⌋ , w.p.  − {x},⌊x⌋ + , w.p. {x}.
ε

This  is  exactly  the  same  as  the  original  definition.  To
some degree,  the merit  of  adopting additive  uniform noise 
lies  in  that  probability  is  exploited in  an implicit  way.  Instead
of  the  complicated  1-bit  random  generator  with  an  arbitrary
possibility  ranging  from  0  to  1,  an  ordinary  uniform  random
number generator will be enough to implement the stochast-
ic  feature,  which  can  be  realized  by  utilizing  some  existing
hardware libraries.

3.3.  Stochastic rounding analysis

Recently,  stochastic  rounding  has  been  widely  accepted
as an effective strategy to acquire better performance in quant-
ized  DCNNs[13, 17, 18].  Yet  there  have  been  scant  works  trying
to  reveal  the  reason  behind  the  success  of  SR.  One  notice-
able  progress[7] is  that  theoretically  analyzed  the  conver-
gence  of  SR,  along  with  its  limitations[7].  In  this  work,  we  try
to explain from an empirical perspective and put our emphas-
is on the necessity to replace NR with SR.

As is claimed in DoReFa-Net[14], to achieve better perform-
ance,  gradients  need  to  be  allocated  with  wider  bit-width
and  should  be  stochastically  quantized.  Moreover,  it  can  be
summarized  from  our  experiments  that  applying  SR  to  the
quantization of gradients actually helps to stabilize the gradi-
ent  descent  process.  As  a  result,  the  initial  learning  rate  can
be  set  to  a  bigger  value  to  avoid  the  local  optimum  phe-
nomenon.

X
To  better  understand  the  mechanism,  consider  a  toy  ex-

ample where  is a random variable that obeys a normal distri-
bution: 

X ∼ N(, ).
We take X as an example to simulate the scaled paramet-

ers  within  the  quantized  DCNN.  Assume  that  the  quantiza-
tion  bit-width  is  4,  so  we  have  16  discrete  outcome  in  total.
During  simulation,  we  generate  1000  value  according  to  the
normal distribution which are then taken as the input of both
NR and SR. Figs. 1 and 2 summarize the results of simulation.

As is depicted in Figs. 1 and 2, SR enables an input scalar
to  have  multiple  corresponding  symbols  in  the  codebook,
which essentially  enhances the flexibility  of  quantization.  Un-
like NR which deterministically generates the outcome, SR ran-
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Fig. 1. NR simulation.

4 Journal of Semiconductors      doi: 10.1088/1674-4926/41/2/022404

 

 
C Y Su et al.: Towards high performance low bitwidth training for deep neural networks

 



−.

domly determines whether to round up or down. Most import-
antly, it should be noted that SR helps to compensate the van-
ished values, which is particularly significant in gradient quant-
ization.  Consider  an  item  of  a  gradient  tensor  whose  value
lies  in  the  interval  ( ,  0.5],  if  we  apply  NR  to  it,  the  out-
come  will  be  undoubtedly  0,  which  means  the  value  will
simply  vanish  and  will  have  no  influence  on  the  update  of
parameters  to  be  learned.  However,  SR  will  make  a  differ-
ence,  since  apart  from  0,  the  outcome  can  be  either  –1  or  1,
which  will  ultimately  contribute  to  the  learning  phase.  It
should be noted that, in fully quantized networks, the noise ef-
fect  incurred  by  quantization  could  be  accumulated  layer  by
layer, and lead to an unacceptable drop of classification accur-
acy on the whole. Hence, preventing small values from vanish-
ing is extremely important in the training process.

To  further  evaluate  the  influence  of  different  rounding
functions,  we  carry  out  experiments  on  AlexNet  and
ResNet18 to compare the classification accuracy with NR and
SR, respectively. In order to provide a fair comparison, we guar-
antee that all  the training hyperparameters are the same and
the only difference is the rounding function. The correspond-
ing results are summarized in Table 1.

As  is  shown  in Table  1,  rounding  function  can  affect  the
classification  accuracy  greatly  in  AlexNet,  which  is  consistent
with  our  analysis  and  simulation.  We  also  notice  that  round-
ing  function  has  a  relatively  slight  impact  on  ResNet-18,
which is probably the consequence of the residual block that
enhances the gradient value in back propagation.

4.  Experiments

In  this  section,  the  proposed  fully  quantized  network  is
evaluated  on  several  prevalent  CNN  models  and  datasets.
Furthermore, we have performed evaluations on some transla-
tion  models  to  study  the  feasibility  of  limited  precision  train-
ing  on  other  tasks.  Our  implementation  is  released  in  PyT-
orch.

4.1.  CIFAR-10

With  50  000  training  images  from  10  categories  and

 × −

10  000  validation  images,  CIFAR-10  is  chosen  as  a  small-size
dataset  to  test  the  performance  of  quantized  models.  We
quantize all  parameters  (W, A, G)  using 8-bit  DFP in  both for-
ward  pass  and  backward  pass.  All  parameters  are  rounded
with  NR,  except  for  the  gradients  exploiting  SR.  A  single
NVIDIA  GeForce  GTX  1080Ti  GPU  card  is  used  for  execution
and the batch size  is  128.  The initial  learning rate  is  0.1,  then
decay  in  cosine  annealing  manner  over  150  epochs.  We  ad-
opt  SGD  optimizer  with  the  momentum  value  being  0.9.  We
use  weight  decay  as  well  and  the  value  is  set  to .
Both ResNet-20 network and ResNet-56 network are tested. Ta-
ble 2 shows their top-1 accuracy of full-precision and low-preci-
sion networks, respectively.

It  can  be  concluded  that  fully  quantized  networks  can
achieve almost identical classification accuracy to its single-pre-
cision  counterparts,  even  in  deep  networks  like  ResNet-56.
We  believe  that  such  results  mainly  benefit  from  the  small
size of  CIFAR-10 dataset  and the corresponding limited num-
ber  of  classification  categories.  To  test  the  stability  and  per-
formance of fully quantized networks, the evaluation on a lar-
ger dataset would be more effective.

4.2.  ImageNet

ImageNet (ILSVRC2012)  is  another  benchmark  chosen  in
our  evaluations,  which  has  ~1.28  ×  106 training  images  from
1000  categories  and  50  000  validation  images.  Similarly,  we
quantize all  parameters  (W, A, G)  using 8-bit  DFP in  both for-
ward  pass  and  backward  pass.  All  parameters  are  rounded
with  NR  except  for  the  gradients,  which  adopt  SR.  Since  im-
ages in ImageNet dataset belong to as many as 1000 categor-
ies,  the  average  predicted  probabilities  will  be  two  orders  of
magnitude smaller than those in CIFAR-10. To cope with this is-
sue, we set the quantization bit-width in the last fully-connec-
ted layer to 16-bit, such that the codebook is expanded signi-
ficantly  and the  extremely  small  values  can be  approximated
more precisely.

 × 
A group of 8 NVIDIA Tesla V100 GPU cards are used for ex-

ecution  and  the  batch  size  is  256  ( ).  The  learning  rate
of  full-precision  network  starts  at  0.1,  while  we  found  the
best initial  learning rate of low-precision model that can con-
verge is 0.05. The decay of learning rate still follows cosine an-
nealing  manner  over  120  epochs.  We  adopt  SGD  optimizer
with  the  momentum  value  being  0.9.  We  use  weight  decay
as  well  and  the  value  is  set  to  1  ×  10–4.  Several  popular  net-
works are tested, namely AlexNet, ResNet-18, ResNet-50 and In-
ception  V3. Table  3 shows  their  top-1  accuracy  of  full-preci-
sion  and  low-precision  networks,  respectively.  (Note:  The  32-
bit accuracy is directly obtained from our PyTorch implementa-
tion  under  the  same  hyperparameters  as  8-bit  model,  which

Table 1.   Top-1 accuracy of 8-bit AlexNet and ResNet18, SR versus NR.

Model 8-bit model (SR) 8-bit model (NR) Acc. Drop

AlexNet 54.34% 52.46% 1.88%
ResNet-18 65.96% 65.72% 0.24%

Table 2.   Top-1 accuracy on CIFAR-10 dataset.

Model Full 8-bit model Acc. Drop

ResNet-20 92.24% 92.12% 0.12%
ResNet-56 94.14% 93.75% 0.39%

Table 3.   Top-1 accuracy on ImageNet dataset.

Model Full 8-bit model Acc. Drop

AlexNet(DoReFa[14]) 55.9% 53.0% 2.9%
AlexNet 54.76% 54.34% 0.42%
ResNet-50 75.46% 74.14% 1.32%
Inception V3 76.95% 75.03% 1.92%
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is  slightly lower than the corresponding accuracy provided in
the official documents)

As  can  be  observed  from Table  3,  fully  quantized  net-
works targeting ImageNet suffer from greater accuracy degrad-
ation.  With  the  topology  going  deeper,  the  degradation
could  be  even  larger.  Unfortunately,  there  are  very  few  re-
lated works to compare with, since many works on low-preci-
sion  networks  are  merely  quantized  on  the  inference  phase.
As  for  fully-quantized  networks,  some  use  very  different  bit-
width for W, A and G.

We  noticed  that  in  DoReFa  networks,  there  is  one  in-
stance of AlexNet where W, A and G are all  quantized with 8-
bit  and  the  ultimate  accuracy  drop  is  2.9%.  In  our  experi-
ment,  we achieve only 0.42% accuracy drop. Please note that
in  terms  of  full-precision  AlexNet,  our  accuracy  is  slightly
lower  than  that  given  by  DoReFa-Net.  The  resaon  is  that  our
network is consistent with the official implementation from Py-
Torch  library[19],  which  does  not  include  the  batch  norm  lay-
er.  Even  so,  given  the  fact  that  DoReFa  requires  the  first  in-
put  layer  and  the  last  layer  to  stay  completely  unquantized,
this  is  actually  a  remarkable  improvement.  We  owe  the  suc-
cess to DFP quantization algorithm and the exploration of op-
timal training hyperparameters.

To be more specific, DoReFa-Net adopted linear quantiza-
tion  for  the  gradient,  which  is  similar  to  the  aforementioned
linear  method.  In  practice,  such  method  can  lead  to  signific-
ant  deviation  caused  by  some  outliers,  especially  when  it
comes to the gradient.  Consequently,  the quantized gradient
makes  it  more  difficult  to  converge,  which  leads  to  higher
drop in classification accuracy.

4.3.  Translation model

To  demonstrate  that  our  quantized  training  framework
can be applied to deep networks other than CNNs, we imple-
ment  a  recurrent  neural  network  (RNN)  using  DFP.  We  con-
sider  a  GNMT  model[20] for  machine  translation  based  on  the
open  source  implementation  of  NVIDIA[21].  The  network  con-
tains  a  4-layer  encoder  and  a  4-layer  decoder  with  attention
modules[22].  The  network  is  trained  and  evaluated  using  an
English-German  translation  dataset,  and  the  evaluation  met-
ric  is  the  BLEU  score[23].  The  quantized  GNMT  model  uses  8-
bit  DFP  except  the  last  layer  of  the  decoder,  which  uses  16-
bit  DFP.  The training strategies  are  the same as  Ref.  [16].  Our
experiment  showed  that  the  8-bit  GNMT  model  achieves  a
BLEU  score  of  24.05  on  the  test  set,  which  is  closed  to  24.46
achieved by a full precision model.

5.  FPGA prototyping

5.1.  Whole structure

According to the proposed quantization algorithm, we im-

plement  the  FPGA  prototype  using  Vivado  HLS.  The  design
consists  of  a  central  controller  and  several  modules  corres-
ponding to different layers. We adopt the layers in Caffe frame-
work.  There are totally  eight types of  layers,  namely convolu-
tion,  batch  normalization,  scale,  relu,  pooling,  element-wise
(eletwise),  fully-connected, and softmax. For each type of lay-
er,  different  modules  handle  the  forward  pass,  backward
pass, weight update and bias update, etc. The central control-
ler coordinates the execution of all the modules in a layer-by-
layer fashion. Fig. 3 shows all the modules we have implemen-
ted  to  support  the  popular  neural  networks.  Totally  21  mod-
ules are implemented. Each kind of layer holds a forward mod-
ule and a backward module for activation and gradient calcula-
tion  in  the  forward  pass  and  backward  pass,  respectively.
Only convolution, fully-connected and scale layers have the ad-
ditional  weight  and  bias  update  modules  since  they  are
equipped  with  weights  and  bias.  Only  one  module  handles
the  softmax  related  calculation.  The  softmax  module  takes
the activation from its preceding layer as input, calculates the
gradients  for  back  propagation  according  to  the  ground-
truth labels, and generates the softmax outputs.

The whole design structure is shown in Fig. 4. The instruc-
tion table defines the information for execution of each layer.
During  training,  the  central  controller  fetches  the  instruction
for one layer each time and activates the corresponding mod-
ules.  After  the  modules  complete  execution,  the  central  con-
troller  fetches  the  instruction  of  the  next  layer,  and  coordin-
ates the execution in such a layer-by-layer fashion. In the for-
ward pass, the central controller fetches the instructions from
smaller  index  to  larger  index,  where  the  smaller  index  indic-
ates  the  layer  close  to  the  beginning  of  the  neural  network.
After the forward pass, the central controller will start the back-
ward pass to fetch the instructions from larger index to smal-
ler  index,  so  that  the  layers  can  be  executed  reversely  for
back propagation. In the forward pass, the forward module is
activated  for  the  layer  while  in  the  backward  pass,  the  back-
ward  module,  weight  update  module  and  bias  update  mod-
ule will  be activated one by one.  At a specific  time spot,  only
one module is running in our design. During the execution of
each module, the module will get the address offset for its re-
lated data from the central controller according to the corres-
ponding  instruction.  The  module  loads  and  stores  its  related
data,  such  as  the  activations,  gradients,  weights,  bias,  etc.,
from and to the off-chip DDR through the load and store inter-
face during execution.

5.2.  Instruction table

The  instruction  table  is  stored  as  an  array  to  define  the
neural network structure, where each row of the array is one in-
struction and corresponds to one layer in the neural network.
The  content  of  the  instruction  indicates  the  specification  of
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Fig. 3. Execution modules.
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the layer.  Each instruction specification contains the informa-
tion  for  the  type  of  the  layer,  the  parameters  of  the  layer  in-
cluding  channel  numbers,  padding  size,  stride  size,  kernel
size, etc., the top and bottom layer ID connected to this layer,
etc. Through the top and bottom layer specification, the con-
nections  in  the  neural  network  can  be  defined.  All  the  re-
lated  data  for  each  layer  including  the  activations  in  the  for-
ward  pass,  the  gradient  in  the  backward  pass,  the  weights
and the biases are stored in the off-chip DDR with specific ad-
dress offsets. The address offsets are also contained in the in-
struction table,  so that the corresponding module can access
the related data in the DDR. For the layers with direct connec-
tions,  the  address  offset  of  their  input  and  output  data  are
the  same,  so  that  the  data  communications  between  layers
are  achieved  in  a  shared  memory  way.  We  develop  a  com-
piler  to  compile  the  network  specification from an Caffe  pro-
totxt  file  into  the  instruction  table.  A  Caffe  prototxt  file
defines  the  network  structure  with  specified  layers  and  their
connection relationships.  During the training,  when the cent-
ral  controller  activates  each  module,  it  will  also  set  the  re-
quired parameters for the module from the instructions, such
as channel numbers, padding size, stride size, kernel size, etc.

5.3.  Data format

According to our algorithm, we keep each weight and bi-
as  as  two  versions,  floating-point  and  8-bit  dynamic  fixed
point. Floating-point version is used to be updated in the back-
ward pass for the accuracy, then it is quantized to 8-bit for all
the  other  computing  with  increased  computing  efficiency.
The  activations  in  forward  pass  and  gradients  in  backward
pass are represented in 8-bit dynamic fixed point for most lay-
ers,  which  is  strictly  in  consistency  with  our  PyTorch  imple-
mentation.  Therefore,  in the forward pass and backward pass
module,  the inputs are all  8-bit  dynamic fixed point data and
the calculation can be simplified to 8-bit operations. Then the
results  are  quantized  back  to  8-bit  dynamic  fixed  point  data
as the output from the module. For each weight and bias up-
date module, the gradients and activations used as the calcula-
tion  input  have  been  already  quantized  into  8-bit  dynamic
fixed point in previous forward pass and backward pass execu-
tions.  These  8-bit  data  are  used to  calculate  for  updating the
32-bit  floating point  weights  and bias.  After  the  execution of
weight  and  bias  update  modules,  the  corresponding  floating
point version weights and biases in the DDR will  be updated.
Then  the  corresponding  weights  and  bias  in  8-bit  dynamic
fixed point  version will  be also updated according to the up-
dated floating point version.

We  adopt  the  SGD  optimizer  with  momentum  for  up-
date,  hence  a  historical  value  for  momentum  should  be  kept
for  each  weight  and  bias,  which  is  stored  in  single  precision

floating-point  for  accuracy.  Through quantization to 8-bit  dy-
namic  fixed  point,  the  multiply-and-add  (MAC)  operations  in
convolution,  fully-connected  and  scale  layers  can  be  simpli-
fied  to  8-bit  calculation  with  better  efficiency  in  both  speed
and  resource.  To  further  enhance  the  computing  efficiency,
the  computation-intensive  modules  are  executed  with  high
parallelism  in  both  batch  dimension  and  output  channel  di-
mension. For example, in the forward pass module of convolu-
tion,  the  calculation  for  several  images  in  the  batch  are  ex-
ecuted simultaneously and the results for multiple number of
output  channels  are  executed at  the same time.  For  the soft-
max and batch normalization layers, due to the complex expo-
nential and square root functions, 32-bit floating point data is
required to do both the forward pass and backward pass calcu-
lation.  Since the activations  and gradients  are  8-bit,  for  these
two  layers,  we  first  convert  the  8-bit  input  back  to  floating
point,  do the calculation,  and then convert  the floating point
data as 8-bit dynamic fixed point output.

5.4.  Module design example

We explore the parallelism in the module design for com-
puting efficiency. For main computing layers such as convolu-
tion,  fully  connected,  scale,  relu,  etc.,  we perform the parallel
execution  in  two  dimensions,  the  batch  dimension  and  out-
put  channel  dimension.  At  the  same  time,  we  calculate  for
PARA number of output channels and calculate for all the im-
ages  in  the  batch.  Therefore,  the  parallelism  is  PARA  ×  Batch
Size is our case. Fig. 5 shows the basic structure for the convo-
lution  forward  pass  module  as  an  example.  Each  execution
unit  (EU)  is  in  charge  of  the  calculation  for  one  output  chan-
nel. Inside each EU, Batch Size number of calculations are per-
formed in parallel.  Each EU calculates the output at  the same
(x,y)  position  in  the  image  simultaneously,  thus  they  can
share  the  input  data  with  different  weights  and  bias.  In  this
way,  we can achieve high parallelism with reduced data load
overhead.  To  support  such  parallelism  and  batch  calculation,
we  organize  the  activations  and  gradients  in  [height, width,
channel, batch]  fashion to provide the data loading and stor-
ing  with  more  locality  for  better  efficiency.  After  the  calcula-
tion,  the  output  data  will  be  passed  to  the  quantization  unit
before  to  DDR.  The  quantization  unit  will  quantize  the  32-bit
integer  result  from the MAC operation back to  8-bit  dynamic
fixed  point.  The  design  concept  and  overall  structure  of  the
other  modules  are  basically  the  same  as  this  example.  For
some  layers,  such  as  batch  normalization  and  softmax,  the
quantization  unit  should  be  also  designed  at  the  input  buf-
fer  to  convert  the  8-bit  dynamic  fixed  point  back  to  floating-
point first for calculation. For the weight and bias update mod-
ules,  both quantized output  for  8-bit  version and non-quant-
ized  output  for  the  floating-point  version  will  be  sent  to  the
DDR.

5.5.  Random number generator

The  random  number  generators  used  in  the  quantiza-
tion unit  for  the stochastic  rounding are designed as  a  16-bit
linear-feedback shift register to generate pseudo random num-
bers  with a  given seed.  The generator  is  shown in Fig.  6.  The
16 bit data is first set to a seed value. Then each time the 16-
bit  value  does  a  right-shift  operation  with  the  XOR  result
from four  of  its  bits  as  the new leftmost  bit  value.  Such a  lin-
ear-feedback  shift  register  can  guarantee  good  randomness.
In our design, different random number generators will get dif-
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ferent random seeds. Moreover, at each training iteration, the
seeds will  be reset as different 16-bit random numbers to the
whole  design  as  a  parameter,  to  further  ensure  the  random-
ness. During the experiments, we have also verified the good
randomness of the generated random numbers. The quantiza-
tion  follows  the  stochastic  rounding  strategy  and  dynamic
fixed  point  representation.  Since  stochastic  rounding  is  only
needed  in  the  backward  pass,  the  random  number  generat-
ors are only set in the backward modules. After the main calcu-
lation of the module, such as the EU parts in the backward con-
volution module, the calculated results are sent to the quantiz-
ation unit in a sequential manner. Each result will go through
the stochastic rounding using one random number from a ran-
dom number generator in the quantization unit. Totally, 7 ran-
dom  number  generators  are  needed,  which  saves  the  re-
source  usage  and  reduces  design  complexity.  However,  such
a sequential  quantization design may affect the whole throu-
ghput, which can be further improved in the future work.

5.6.  Implementation results

The  whole  FPGA  design  shows  the  same  functionality  as
the  python  code,  with  the  same  outputs  and  training  ability.
We  map  the  ResNet50  design  from  the  Caffe  prototxt  file
onto  Vertix  Ultrascale+ XCVU9P FPGA with  the  clock  rate  be-
ing 200 MHz.  The  observed peak  throughput  can be  as  large
as 102 GOPS. The resource usage is as in the Table 4. The paral-
lel  degree  of  this  implementation  is  16  ×  16,  which  means
the parallelism is 16 in the batch dimension and 16 in the out-
put  channel  dimension.  All  the  modules  for  different  layers
are  implemented  on  the  FPGA  at  the  same  time  while  only
one  module  is  running  at  one  time,  therefore  the  peak
throughput  is  limited.  Pipelining  among  different  layers  in

the  layer-fusion  style  can  be  considered  to  further  improve
the design,  although which is  quite  complicated and beyond
the scope of this work.  Without quantization, the design can-
not achieve the parallelism of 16 × 16 due to the lack of DSPs
since  all  the  operations  are  in  floating  point  with  the  de-
mand of using DSP. Through quantization using 8-bit dynam-
ic fixed point in our design, the resource usage demand is de-
creased by a large degree to enable larger parallelism.

In  summary,  DFP  quantization  reduces  the  resource  us-
age  significantly.  For  example,  for  a  convolution  layer,  our
design  with  quantization  reduces  the  number  of  DSP  usage
from  5124  to  48  (by  106x),  reduces  the  BRAM  block  usage
from 162 to 82 (by 1.97x),  reduces the FF usage from 466926
to  74933  (by  6.23x),  reduces  the  LUT  usage  from  412630  to
141828  (by  2.9x).  Hence,  with  quantization,  our  low  bitwidth
training scheme can explore more parallelism with limited re-
source to boost the performance. The current FPGA prototyp-
ing is relatively simple without further optimization, since our
work mainly focuses on the algorithm level. Further optimiza-
tion  of  the  hardware  implementation  are  left  as  future  work
to further improve the throughput.

6.  Discussion and future work

In  this  work,  we  develop  and  implement  fully  quantized
DNN with minimum accuracy degradation. We find DFP to be
an  appropriate  quantization  method  that  is  both  hardware-
friendly  and well-performed in  numerical  approximation.  Our
FPGA  based  prototype  proved  that  the  design  works  cor-
rectly and the training scheme can be mapped to hardware ef-
ficiently.  The required hardware resource can be dramatically
decreased without noticeable drop in performance. However,
there is large room to improve the design and hardware imple-
mentation in the future works.

Theoretical  analysis. In  this  work,  we show the benefits
of stochastic rounding over the nearest rounding through sim-
ulation and experiments. However, we believe some theoretic-
al  analysis  regarding  the  comparison  will  be  more  convin-

Table 4.   Resource usage of FPGA prototyping.

Parameter BRAM DSP FF LUT

Used 238 610 434213 564233
Percentage 5% 8% 18% 47%
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cing  and  solid.  Similar  to  Ref.  [7],  this  may  include  conver-
gence analysis, mathematical modeling, etc.

Quantization  methods. As  mentioned  previously,  there
are  various  quantization  functions  with  their  respective  pros
and  cons.  Despite  DFP  works  fine  in  our  design,  it  is  not  cer-
tainly  to  be  the  optimal  method.  For  example,  it  is  argued
that  feature  maps  and  parameters  to  be  quantized  in  net-
works do not obey symmetrical distribution around zero[11]. Ad-
aptive  methods  which  can  dynamically  adjust  the  mapping
function and more sophisticated quantization schemes might
become better solutions in the future.

FPGA  implementation  optimization. Fully  quantized
low-precision  networks  are  expected  to  be  implemented  on
embedded  systems  in  the  end.  In  this  work,  we  studied  the
design  methodology  of  FPGA  implementation  and  designed
a  simple  prototype,  while  there  is  still  a  large  room  left  for
optimization.  In  the  future  work,  deeper  pipelining,  fusion
of  layers,  and  the  reduction  of  SR  overhead  need  to  be  fur-
ther  explored  to  significantly  improve  the  throughput  of  the
design.

7.  Related works

The  research  regarding  low  precision  neural  networks
has  been  attractive  over  last  several  years.  BinaryConnect[24]

is  thought  to  be  the  first  attempt  to  quantize  contemporary
neural networks, where only weights are binarized. BinaryCon-
nect achieves identical  accuracy to full  precision networks on
CIFAR-10.  BNN[25] further  binarize  both  weights  and  activa-
tions  and  the  evaluation  shows  little  accuracy  drop  as  well.
Challenging large dataset and deep architectures with quant-
ized  networks  was  pioneered  by  XNOR-Net[26].  However,
XNOR-Net  find  that  binarizing  activations  in  addition  to
weights  could  introduce  an  accuracy  drop  which  is  as  large
as 12.4%.

W < A < G

Such  results  naturally  arouse  a  question:  Which  kind  of
parameters  (i.e. W,  A,  G)  in  neural  networks  should  we  alloc-
ate more number of bits to prevent severe degradation in ac-
curacy?  DoReFa-Net[13] answers  the  question  and  managed
to  draw  a  conclusion:  The  order  of  required  quantization  bit-
width among parameters is .

In  addition,  Wage[27] also  targets  quantized  neural  net-
works for both training and inference, where batch-normaliza-
tion  (BN)  is  replaced  by  constant  scaling  factors  to  improve
regularization.  The  erasing  of  BN  actually  removes  a  huge
obstacle in quantized networks.

In  terms  of  works  closely  related  to  stochastic  rounding,
HALP[18] takes inspiration from SR to propose a novel low-preci-
sion  SGD  optimizer.  Lin  and  Talathi  investigate  the  diffi-
culties  of  training  low-precision  networks  and  provides  more
complementary techniques that are orthogonal to SR to com-
bat the instability and improve the training outcome[28].

8.  Conclusion

In  this  paper,  we  investigate  various  quantization  meth-
ods  to  find  DFP  that  is  both  effective  and  hardware-friendly.
Additionally,  stochastic  rounding is  analyzed through simula-
tion  and  experiments  to  uncover  the  reason  behind  its  suc-
cess.  Most  importantly,  we  build  fully  quantized  neural  net-
works  released  in  PyTorch  and  evaluated  its  performance.  To
the best of our knowledge, we are the first work to achieve 8-
bit  DCNN  as  deep  as  ResNet-50  and  Inception  V3  with  less

than 2% accuracy drop. In addition, an 8-bit GNMT model is de-
veloped to test its performance on machine translation appli-
cations.  Compared to  the full  precision model  whose BLEU is
24.46,  we  achieve  a  very  close  24.05  BLEU  on  the  test  set.
Moreover,  we  designed  a  simple  prototype  on  FPGA  by
Vivado HLS, which is an essential step towards ultimate deploy-
ment of quantized neural networks on hardware. It is demon-
strated  that  our  fully  quantized  network  helps  to  reduce  the
computing  resources  significantly.  Last  but  not  the  least,  we
realize that there remains problems to be solved, like theoretic-
al  analysis  of  rounding  scheme,  more  effective  quantization
method, and hardware implementation optimization to be ex-
plored to realize an efficient mapping of the whole design on
embedded platforms.
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